

Übersichtsreferat / Review Article

Populationsgenetische Untersuchung der Esterase D im Lübecker Raum

J. Weissmann¹, T. Tsuji² und O. Pribilla¹

Population Genetic Examination of Esterase D in the Lübeck Area

Summary. 1251 blood samples of non-related human beings coming from the area of Lübeck have been examined. Frequencies of the esterase D allel were $EsD^1 = 0.9001$ and $EsD^2 = 0.0999$.

Key words: Blood groups, esterase D - Esterase D, polymorphism

Zusammenfassung. Es wurden 1251 Blutproben nicht-verwandter Personen aus dem Raum Lübeck untersucht. Die Genfrequenzen sind für $EsD^1 = 0,9001$ und $EsD^2 = 0.0999$.

Schlüsselwörter: Blutgruppen, Esterase D – Esterase D, Polymorphismus

Hopkinson u. Mitarb. beschrieben 1973 zum ersten Male den genetisch gesteuerten Enzympolymorphismus der Esterase D (EsD), der sich in der Stärkegel-Elektrophorese darstellt. Es handelt sich um drei Phänotypen EsD 1, EsD 2–1 und EsD 2, die offenbar von zwei Allelen EsD¹ und EsD² an einem autosomalen Genort gesteuert und kodominant vererbt werden. 1974 sahen Bender und Frank einen neuen EsD-Phänotypen, den sie EsD 3–1 nannten. Ohne Kenntnis dieser Arbeit wurde das Allel EsD³ außerdem 1975 von Rittner und Müller beschrieben. Sie fanden bei populationsgenetischen Untersuchungen den Phänotypen 3–1.

Erst 1978 wurde von Suzuki und Mitarb. bei Untersuchungen von 2367 Blutspendern in Nord-Ost-Japan der Phänotyp EsD 3-2 beobachtet. Außerdem zeigte sich eine weitere Variante, die sich keinem der bisher beobachteten Phänotypen zuordnen ließ.

1976 teilten Berg und Mitarb. das Vorkommen eines weiteren Allels EsD⁴ mit. Sie hatten bei einer Familienuntersuchung die Phänotypen EsD 4–1 und EsD 4–2 beobachtet.

2 Jahre später beobachteten Grüner und Simeoni dieses Allel ebenfalls: Anläßlich einer Familienuntersuchung fanden sie bei einem Vater den Phänotyp EsD4-1; bei dessen Sohn konnten sie EsD4-2 nachweisen.

Sonderdruckanfragen an: Prof. Dr. Dipl.-Chem. O. Pribilla (Adresse siehe oben)

¹ Institut für Rechtsmedizin der Medizinischen Hochschule Lübeck, Kronsforder Allee 71—73, D-2400 Lübeck 1, Bundesrepublik Deutschland

² Institut für Gerichtliche Medizin der Medizinischen Akademie Wa Kayama, Japan

92 J. Weissmann et al.

1976 wurde von Hitzeroth und Mitarb. das Vorkommen eines weiteren Allels der EsD mitgeteilt. Die Autoren fanden dieses bei einem Bewohner von Mamelodi (Südafrika) und bezeichneten den Typus mit EsD^{Ma}, wobei sich der Phänotyp EsD Ma-1 zeigte und eine Kombination von Esterase D¹ und Esterase D^{Ma} angenommen wurde.

1977 wurden von Marks und Mitarb. bei populationsgenetischen Untersuchungen in einer Ambo-Bevölkerung in Südafrika EsD-Typen mit einer deutlichen Fluoreszenzverminderung der Enzymbanden beobachtet. Sie schlossen dabei auf ein stummes Gen und bezeichneten dessen Typus als EsD⁰. Die Untersuchungen waren nach der Methode von Hopkinson und Mitarb. durchgeführt worden.

Die vorliegende Arbeit berichtet über die Untersuchung von 1251 nichtverwandten Personen aus der Lübecker Bevölkerung. Ferner werden alle bisher publizierten Genfrequenzenuntersuchungen über Esterase D-Phänotypen zusammengestellt.

Material und Methode

Es wurden Blutproben von 1251 nicht miteinander verwandten Personen aus dem Lübecker Raum untersucht, die zur Alkoholbestimmung eingeschickt worden waren.

Zur Bestimmung der Phänotypen Esterase D wurde die Agarose-Dünnschicht-Elektrophorese, modifiziert durch Kühnl, Nowicki und Spielmann, angewendet.

Ergebnisse und Diskussion

Die Frequenzen der EsD-Phänotypen von 1251 nicht-verwandten gesunden Personen sind in Tabelle 1 aufgeführt. Die Beobachtungs- und Erwartungswerte stimmten beim statistischen Vergleich mit der χ^2 -Methode gut überein. Seltenere Varianten wie EsD 3-1, EsD 3-2, EsD 4-1 und EsD 4-2 oder Defekttypen wurden von uns nicht beobachtet.

Tabelle 2 zeigt eine Zusammenstellung aller bisher veröffentlichten Arbeiten über Esterase D, zeitlich sowie nach Kontinenten bzw. Ländern aufgegliedert.

Tabelle 1. Es	sD-Phänotypen ur	d Gentrequenzen	bei 1251	nicht verw	andten Personer	n aus dem
Raum Lübec	ck					
						_

EsD Phänotypen	Beobachtet		Erwartet		Genfrequenzen	
	n	%	n	%		
1	1013	80,98	1013,43	81,01	$EsD^1 = 0,9001$	
2-1	226	18,06	225,18	18,00		
2	12	0,96	12,38	0,99	$EsD^2 = 0.0999$	
	1251	100	1250,99	100	1,0000	

 $\Sigma \chi^2 = 0.01482$; 0.995 > P (df = 2) > 0.990

Tabelle 2. Vergleich der bisher veröffentlichten EsD-Genfrequenzen verschiedener Populationen

	(n)	Quelle	EsD ¹	EsD ²	EsD ³
Europa					
Belgien	166	38	0,894	0,106	
Dänemark	1392	44	0,896	0,104	
Deutschland					
Berlin-West	535	32	0,8835	0,1165	
Berlin-Ost	1492	43	0,8780	0,1220	
Bonn	562	42	0,8897	0,1094	0,0009
Freiburg	185	3	0,8892	0,1081	0,0027
Hamburg	408	7	0,8824	0,1176	
Hamburg	736	23	0,8886	0,1114	
Hamburg	1430	10	0,8892	0,1108	
Hessen	510	30	0,8882	0,1118	
Hessen	1132	27	0,8856	0,1144	
Kiel	1111	28	0,8914	0,1086	
Kiel	2028	20	0,8965	0,1035	
Köln	1082	29	0,8888	0,1112	
Nordbayern	2530	49	0,8737	0,1261	0,0002
Schleswig-Holstein	1088	22	0,902574	0,097426	
Lübeck (eigene Untersuchung)	1251		0,9001	0,0999	
England (Nord-Ost)	583	38	0,876	0,124	
England (Süd-Ost)					
Europäer	774	39	0,880	0,120	
Neger	97	39	0,890	0,110	
Inder	35	39	0,810	0,190	
Finnland	317	2	0,923	0,077	
Britannien	4749	11	0,8921	0,1079	
(Neger in Birmingham)	76	17	0,9342	0,0658	
(Asiaten-Inder in Birmingham)	129	17	0,8140	0,1860	
Großbritannien	399	47	0,877	0,123	
Großbritannien (Zigeuner)	153	47	0,895	0,105	
Holland	1018	17	0,8585	0,1415	
Juden (Aschkenasim)	235	18	0,9000	0,1000	
Italien (Ital. Alpen)	90	38	0,950	0,050	
Mailand	549	41	0,865	0,135	
Rom	540	41	0,840	0,160	
Süditalien	64	41	0,875	0,125	
Toscana	500	1	0,856	0,143	0,001
Venedig	630	12	0,8556	0,1444	
Ligurien	105	17	0,8619	0,1381	
Irland	186	47	0,877	0,123	
Lappland	136	47	0,757	0,243	

Tabelle 2. (Fortsetzung)

	(n)	Quelle	EsD ¹	EsD ²	EsD ³
Norwegen	217	35	0,887	0,113	
Norw. Lappen	196	35	0,872	0,128	
Schweiz — Bern	744	40	0,867	0,133	
Schweden	200	2	0,920	0,080	
Schw. Lappen	219	2	0,941	0,059	
Torenedalen-Raum	200	2	0,915	0,085	
Afrika					
Bantu	180	8	0,9722	0,0278	
Kamerun	92	47	0,945	0,055	
Gambia	734	25	0,916	0,084	
Uganda	209	38	0,890	0,110	
Ambo (Südafrika)					
Kwangama	115	31	0,961	0,039	
Ndonga	98	31	0,954	0,046	
Kwambi	76	31	0,773	0,112	$0,115 \text{ EsD}^0$
Mbalantu	56	31	0,920	0,080	
Kwalundhi	60	31	0,942	0,058	
Ngandjera	56	31	0,920	0,080	
Nkolonkadhi	29	31	0,948	0,052	
Nordafrikanische Juden	226	18	0,898	0,102	
Juden aus:					
Iran	70	18	0,871	0,129	
Türkei	138	18	0,869	0,131	
Ägypten	57	18	0,868	0,132	
Balkan	113	18	0,858	0,137	0,0045
Irak	213	18	0,822	0,178	
Arabien	221	18	0,794	0,206	
Yemen	156	18	0,788	0,212	
Irak					
Kirkuk	42	37	0,762	0,238	
Ramadi	64	37	0,758	0,242	
Bagdad	122	37	0,811	0,189	
Barsa	92	37	0,804	0,196	
Südafrika					$\mathrm{EsD}^{\mathrm{Ma}}$
Zulu	119	24	0,966	0,034	1
Asien	10.4	47	0.640	0.251	
Nepal	134	47	0,649	0,351	
Ost-Nepal	365	11	0,6178	0,3822	
Isle of Man	320	11	0,8453	0,1547	
Kuwait	160	11	0,8032	0,1968	

Tabelle 2. (Fortsetzung)

	(n)	Quelle	EsD ¹	EsD ²	EsD ³
Panjab	303	11	0,7971	0,2029	
Punjabi	40	38	0,8000	0,2000	
Haryanvi	94	38	0,819	0,181	
Delhi (Moslem)	100	38	0,730	0,270	
Himachali	125	38	0,764	0,236	
Gujardati	283	38	0,829	0,171	
Kerale (Malaien)	76	38	0,803	0,197	
Bangadesch (Menjali-Moslems)	166	38	0,771	0,229	
Ceylon (Singhalesen)	135	38	0,767	0,237	
Tibetaner	114	38	0,592	0,408	
Afghanistan	224	38	0,897	0,103	
Assam	179	6	0,7263	0,2767	
Japan	2367	46	0,642	0,358	
Tokio	1066	36	0,6576	0,3424	
Ainu (Iburi)	94	36	0,681	0,319	
Ryukyan (Okinowa-Insel)	75	36	0,631	0,369	
Mie	847	26	0,6500	0,3500	
Indien			,	,	
Maharashtra	278	25	0,773	0,227	
Nav Buddha	47	14	0,723	0,277	
Maratha	49	14	0,755	0,245	
Desastha Rgveck Brahmin	96	14	0,729	0,271	
Chitpuvan Brahmin	71	14	0,768	0,232	
Chandrasenye Kayastha Prabhu	. 93	14	0,728	0,172	
Bhil	33	14	0,591	0,409	
Katkari	99	14	0,747	0,253	
Parsee	91	14	0,731	0,269	
West-Bengalen			•	,	
Santal	92	14	0,745	0,255	
Süd-Indien			,	•	
Kota-Nilgiri Berge	549	19	0,7659	0,2341	
Kolams	130	8	0,5385	0,4616	
Sindhi	183	8	0,8989	0,1011	
Singapur				•	
Malaien	198	8	0,6439	0,3560	
Chirresen	262	8	0,5648	0,4351	
Inder	171	8	0,7398	0,2602	
ustralien					
Papua					
Neuseeland Samoa	111	9	0,5792	0,4203	
Samoa	77	9	0,5779	0,4221	

J. Weissmann et al.

Tabelle 2. (Fortsetzung)

	(n)	Quelle	EsD ¹	EsD^2	EsD^3
Amerika					
USA					
Neufundland	163	47	0,890	0,110	
Minnesota	506	16	0,9111	0,0889	
Kanada					
Indianer	230	· 15	0,8239	0,1761	
Eskimos	80	15	0,8438	0,15633	
Kaukasier	1484	15	0,9198	0,0802	
Random	1562	15	0,9177	0,0823	
U.S. Chinesen	111	44	0,612	0,399	
U.S. Japaner	55	44	0,582	0,418	
Eskimos Kanada					
Igloolik	336	13	0,7083	0,2917	
Indianer					
Guyana: Macushi	498	34	0,687	0,313	
Brasilien					
Wapishana Indianer	613	34	0,798	0,202	
Makiritare	69	33	0,7618	0,2319	
Nordost-Brasilien					
Parakanan	37	33	0,3649	0,6351	
Gorotire	163	33	0,5613	0,4387	
Kraho	146	33	0,4692	0,5308	
Yanomana	419	33	0,8568	0,1432	
Indianer Paraguay (Moro)	112	33	1,0000	0,0000	
Ganta (Gaingang)	74	33	0,6554	0,3446	
Chile (Mapuche)	51	33	0,8200	0,1800	

Aus diesen Daten geht hervor, daß bisher 59 205¹ Personen untersucht wurden, von denen 16 380 Deutsche sind.

Die vorliegenden Esterase-D-Frequenzen innerhalb des deutschen Raumes weichen nur unwesentlich voneinander ab und liegen in einer Variationsbreite für EsD¹ zwischen 0,902574 und 0,8737 bzw. für EsD² zwischen 0,1261 und 0,097426.

Frequenzen für das Gen EsD³ wurden im Raum Nordbayern mit 0,0002, Bonn 0,0009 und Freiburg mit 0,0027 angegeben. Im Untersuchungsgut von insgesamt 59 205¹ Personen liegt die Variationsbreite für die Genfrequenz EsD¹ zwischen 0,9885 und 0,5385. Die Genfrequenzen für EsD¹ der europäischen Bevölkerungsgruppen liegen zwischen 0,950 (italienische Alpen) und 0,840 (Rom).

Klar erkennbar ist, daß in Nordeuropa die höchsten Genfrequenzen für EsD¹ vorkommen und in Südeuropa bedeutend niedrigere — eine Ausnahme bilden die italienischen Alpen.

¹ Diese Zahl entsteht, wenn man alle Untersuchungen von Blake (1977) zugrundelegt

Finnland als nordeuropäisches Land hat $EsD^1 = 0.923$ und Schweden $EsD^1 = 0.920$. In Deutschland finden wir hohe bis mittlere Werte, und in Italien liegen die Werte für EsD^1 deutlich niedriger. Beispiele sind Rom mit $EsD^1 = 0.840$, Mailand mit $EsD^1 = 0.865$, Venedig mit $EsD^1 = 0.8566$ und die Toscana mit $EsD^1 = 0.856$.

Bei Asiaten ist die EsD¹-Frequenz wiederum niedriger als bei Europäern.

Der Wert $\mathrm{EsD^1}=1,000$ wurde bei Indianern aus Paraguay (Moro) errechnet. In der afrikanischen Bevölkerung ist das Gen $\mathrm{EsD^1}$ mit Frequenzen zwischen 0,890 (Uganda) und 0,9722 (Bantu) vertreten. Genfrequenzen für $\mathrm{EsD^1}=1,000$ wurden auch bei einer südafrikanischen Bevölkerungsgruppe — den Swazi — beobachtet.

Literatur

- Bargagna, M., Domenici, R., Morali, A.: Red cell esterase-D-polymorphism in the population of tuscany. Humangenetik 29, 251—263 (1975)
- Beckman, G., Beckman, L.: Population studies in northern sweden. Hum. Hered. 27, 403-407 (1977)
- 3. Bender, K., Frank, R.: Esterase D polymorphismus. In: Darstellung in der Hochspannungselektrophorese und Mitteilung von Allelhäufigkeiten. Humangenetik 23, 315—318 (1974)
- 4. Berg, K., Schwarzfischer, F., Wischerath, H.: Esterase D polymorphism: Description of the "New" allele EsD⁴. Hum. Genet. 32, 81—83 (1976)
- 5. Berg, K., Rodewald, A., Schwarzfischer, F., Wischerath, H.: Ein neues Allel (EsD⁴) im Esterase D-System. Ärztl. Lab. **22**, 223—224 (1976)
- 6. Benkmann, H. G., Goedde, H. W.: Esterase-D polymorphism in assam by cellulose acetate electrophoresis. Humangenetik 27, 343—345 (1975)
- Benkmann, H. G., Goedde, H. W.: Esterase D polymorphism: gene frequencies and family data. Humangenetik 24, 325—327 (1974)
- 8. Blake, N. M.: Glutamic pyruvic transaminase and esterase D Types in the asian pacific area. Hum. Genet. 35, 91—102 (1977)
- Booth, P. B., Faogali, J. L., Kirk, R. L., Blake, N. M.: HLA types, blood groups, serum protein and red cell enzyme types among samoans in new zealand. Hum. Hered. 27, 412— 423 (1977)
- Brinkmann, B., Püschel, K.: Forensischer Anwendungsbereich und Populationsgenetik der Enzympolymorphismen Esterase D und Glyoxalase I. Z. Rechtsmed. 81, 181—190 (1978)
- Cartwright, R. A., Bethel, I. L., Hargreaves, H., Izatt, M., Jolly, J., Mitchell, R. A., Sawhney, K. S., Samith, M., Sunderland, E., Teasdale, D.: The red blood cell esterase D polymorphism in Europe and Asia. Hum. Genet. 33, 161—166 (1976)
- 12. Cortivo, P., Breda, F., Ongaro, G., Bareggi, G., Ferraretto, L.: Red cell esterase D polymorphism in the veneto population. Z. Rechtsmed. 81, 103—105 (1978)
- Cox, D. W., Simpson, N. E., Jantti, R.: Group-specific component, alpha₁-antitrypsin and esterase D in Canadian Eskimos. Hum. Hered. 28, 341—350 (1978)
- 14. Das, S. K., Mukherjee, B. N., Malkotra, K. C., Majumder, P. P.: A note on esterase D polymorphism in some Indian populations. Hum. Hered. 27, 393—395 (1977)
- Donald, L. J.: Placental enzyme polymorphismus in Canadian populations. Hum. Hered. 26, 234—238 (1976)
- Dykes, D. D., Polesky, A. B., Polesky, H. F.: Paternity testing by using erythrocyte enzyme esterase D. J. Forens. Sci. 22, 173—177 (1977)
- 17. Ebeli-Struijka, A. C., Wurzer-Figurelli, E. M., Ajmar, F., Meera Kahn, P.: The distribution of esterase D variants in different ethnic groups. Hum. Genet. 34, 299—306 (1976)
- Golan, R., Ben-Esser, J., Szeinberg, A.: Esterase D polymorphism in several population groups in Israel. Hum. Hered. 27, 298—304 (1977)
- 19. Ghosh, A. K., Kirk, R. L., Voshi, S. R., Bhatia, H. M.: A population genetic study of the kota in the Nilgiri Hills, south India. Hum. Hered. 27, 225—241 (1977)

98 J. Weissmann et al.

 Grüner, O., Simeoni, E.: Polymorphismus der menschlichen Erythrocyten Esterase D. Z. Rechtsmed. 81, 261—267 (1978)

- Hayward, J. W., Bosworth, A. L.: Esterase D types in human bloodstains. J. Forens. Sci. Soc. 15, 289—291 (1976)
- 22. Heide, K. G.: Esterase D Polymorphismus: Phänotypenverteilung und Genfrequenzen in Norddeutschland (Schleswig-Holstein). Z. Rechtsmed. 77, 295—298 (1976)
- 23. Heyns, W.: Untersuchungen zur Anwendbarkeit des Polymorphismus der Esterase D in der forensischen Serologie. Diss. Hamburg (1976)
- 24. Hitzeroth, H. W., Bender, K., Wolfswinkel, J. M.: Esterase D polymorphism in South African Negroids. S. Afr. J. Sci. 72, 301-303 (1976).
- 25. Hopkinson, D. A., Mestriner, M. A., Cortner, J., Harris, J.: Esterase D: A new human polymorphism. Ann. Hum. Genet. 37, 119—137 (1973)
- 26. Ishimoto, G., Kuwata, M., Fujita, H.: Esterase D polymorphism in Japanese. Jap. J. Hum. Genet. 19, 157—160 (1974)
- 27. Jovanovic, M.: Frequenzanalysen und Familienuntersuchungen im Esterase D-System bei der hessischen Bevölkerung. Diss. Frankfurt (1976)
- 28. Köhler, H. W.: Genetische Untersuchungen über die Erythrozyten Esterase D. Diss. Kiel (1977)
- 29. Köster, B., Leupold, H., Mauff, G.: Esterase D polymorphism high-voltage agarose-gel electrophoresis and distribution of phenotypes in different European populations. Humangenetik 28, 75—78 (1975)
- Kühnl, P., Nowicki, L., Spielmann, W.: Untersuchungen zum Polymorphismus der intraerythrocytären Esterase D (EsD) mittels Hochspannungselektrophorese auf Agarosegel. Z. Rechtsmed. 75, 179—182 (1974)
- Marks, M. P., Jenkins, T., Nurse, G. T.: The red-cell glutamic-pyruvate transaminase, carbonic anhydrase I and II and esterase D polymorphisms in the ambo populations of South West Africa, with evidence for the existence of an EsD⁰ allele. Hum. Genet. 37, 49—54 (1977)
- 32. Martin, W., Ott, A.: Polymorphismus der menschlichen Erythrozyten-Esterase D. Phänotypenverteilung und Genfrequenzen in Berlin (West). Blut 30, 299—301 (1975)
- 33. Mestriner, M. A., Salzano, F. M., Neel, J. V., Ayres, M.: Esterase D in South American Indians. Ann. J. Hum. Genet. 28, 257—261 (1976)
- Neel, J. V., Tanis, R. J., Migliazza, E. C., Spielman, R. S., Salzano, F., Oliver, W. J., Morrow, M., Bachofer, S.: Genetic studies of the Macuski and Wapishana Indians. Hum. Genet. 36, 81—107 (1977)
- 35. Olaisen, B., Teisberg, P., Jonassen, R.: EsD polymorphism in Norway. Hum. Genet. 34, 63-64 (1976)
- Omoto, K., Aoki, K., Harada, S.: Polymorphism of esterase D in some population groups in Japan. Hum. Hered. 25, 378—381 (1975)
- 37. Papiha, S. S., Al-Agidi: Esterase D and superoxide dismutase polymorphisms in Irak. Hum. Hered. 26, 394—400 (1976)
- 38. Papiha, S. S., Nahar, W.: The world distribution of the electrophoretic variants of the red cell enzyme esterase D. Hum. Hered. 27, 424—432 (1977)
- 39. Parkin, B. H., Adams, E. G.: The typing of esterase D in human bloodstains. Med. Sci. Law. 15, 102—105 (1975)
- Pflugshaupt, R., Scherz, R., Bütler, R.: Polymorphism of human red cell adenosine deaminase, esterase D, glutamate pyruvate transaminase, and galactose-1-phosphate uridyltransferase in the Swiss population. Hum. Hered. 26, 161—166 (1976)
- 41. Ranzani, G., Beretta, M., Santachiara Benerecetti, A. S.: The polymorphism of red cell esterase D in Italy. Hum. Hered. 28, 147—150 (1978)
- 42. Rittner, Ch., Müller, G.: Esterase D: Some population and formal genetical data. Hum. Hered. 25, 152—155 (1975)
- 43. Ruptschewa, L., Radam, G., Strauch, H.: Verteilung der Esterase D-Typen in Berlin. Dtsch. Gesundh.-Wesen 33, Heft 37 (1978)
- 44. Sensabaugh, G. F., Golden, V. I.: Esterase D polymorphism in Chinese and Japanese. Hum. Genet. 35, 103—105 (1976)

- 45. Sorensen, S. A., Fenger, K.: Gene frequencies and linkage data on EsD in man. Hum. Hered. 26, 90—94 (1976)
- Suzuki, T., Kashimura, S., Umetsu, K., Kudo, T.: Esterase D phenotypes in Northeastern Japan. Z. Rechtsmed. 81, 119—123 (1978)
- 47. Welch, S., Lee, J.: The population distribution of genetic variants of human esterase D. Humangenetik 24, 329—331 (1974)
- 48. Welch, S.: Red cell esterase D polymorphism in Gambia. Humangenetik 21, 365—367 (1974)
- 49. Wiebecke, D.: Untersuchungen zum Polymorphismus der menschlichen erythrozytären Esterase D. Blut 33, 329—331 (1976)

Eingegangen am 14. Dezember 1978